2005 Vol. 7, No. 3 439–442

General and Efficient Indole Syntheses Based on Catalytic Amination Reactions

Lutz Ackermann*

Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany

lutz.ackermann@cup.uni-muenchen.de

Received November 14, 2004

ABSTRACT

Highly flexible and efficient syntheses of the indole backbone are presented starting from o-alkynylhaloarenes. These transformations proceed via a palladium- or a copper-catalyzed amination reaction and a subsequent cyclization reaction in good to excellent yields. Furthermore, a multicatalytic one-pot indole synthesis starting from o-chloroiodobenzene is viable using a single catalyst consisting of an N-heterocyclic carbene palladium complex and Cul.

The prevalence of indoles in natural products and biologically active compounds results in a continued strong demand for the development of general, flexible, and especially regioselective synthetic methods of this structural moiety. In this context, palladium-catalyzed transformations for the synthesis of the indole backbone, starting from *o*-alkynylanilines or derivatives thereof² as well as *o*-haloanilines, have been studied intensively. However, much less attention has been paid to the use of *o*-dihaloarenes 1 or *o*-alkynylhaloarenes 2, although they are easily accessible from inexpensive starting materials. Transition metal-catalyzed C-N bond forming reactions using aryl halides have proved to be a

versatile method for the synthesis of a variety of amines.⁵ Additionally, cyclization reactions of *o*-alkynylanilines **3** have been mediated by strong bases⁶ or catalyzed inter alia by palladium complexes² and Lewis acids,⁷ such as CuI.⁸ Herein, highly efficient, regioselective indole syntheses are reported, that are based on amination reactions of *o*-alkynylhaloarenes **2** (Scheme 1). Furthermore, a multicatalytic one-pot indole synthesis consisting of a Sonogashira reaction and an amination reaction with subsequent cyclization is presented. This multicatalytic reaction is accomplished by a single catalytic system.

Scheme 1. Indole Synthesis Using *o*-Dihaloarenes

R¹

$$X = Br, CI$$
 R^1
 $X = R^2$
 R^3NH_2
 R^3NH_2

^{(1) (}a) Gilchrist, T. L. *Heterocyclic Chemistry*; Addison-Wesley Longman Limited: Singapore, 1997. (b) Joule, J. A.; Mills K.; Smith, G. F. *Heterocyclic Chemistry*; Stanley Thornes Ltd.: Cheltenham, 1995.

^{(2) (}a) Utimoto, K.; Miwa, H.; Nozaki, H. Tetrahedron Lett. 1981, 22, 4277–4278. (b) Irtani, K.; Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1799–1802. (c) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1989, 30, 2581–2584. (d) Cacchi, S.; Carnicelli, V.; Marinelli, F. J. Organomet. Chem. 1994, 475, 289–296. (e) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; Wiley: Chichester, 2004; pp 211–216. (f) Leni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285–2309.

^{(3) (}a) For a review, see: Larock, R. C. J. Organomet. Chem. 1999, 576, 111–124. Selected recent examples: (b) Chen, C.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62, 2676–2677. (c) Nazaré, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. Angew. Chem., Int. Ed. 2004, 43, 4526–4528. (d) Ackermann, L.; Kaspar, L. T.; Gschrei, C. J. Chem. Commun. 2004, 2824–2825.

Preliminary studies showed that a palladium complex generated from the sterically hindered *N*-heterocyclic carbene precursor **5** (Figure 1), in combination with KO-*t*-Bu, ⁹ was

Figure 1. Imidazolium salt 5.

an efficient catalyst for the direct conversion of alkynes 2^{10} to the corresponding indoles 4 in 2 h with excellent isolated yields (Table 1).¹¹ In contrast to the previously described method,⁴ the protocol was not only applicable to sterically hindered amines (entry 3), but to simple less sterically demanding alkyl-substituted amines (entries 4 and 5).

Furthermore, it was not limited to simple alkyl-substituted alkynes, but was used for the conversion of aryl- and *t*-Bu-substituted derivatives with excellent yields. Different *N*-protecting groups, such as benzyl- (entries 2, 8, and 9) or *p*-methoxybenzyl (PMB) (entry 6), could be introduced via the corresponding amine, allowing for further elaboration of the resulting indoles. Additionally, mild bases, such as Cs₂CO₃¹² or less expensive and less toxic K₃PO₄ could be

Table 1. Palladium-Catalyzed Indole Synthesis^a

				211			
entry	b	R ¹	R ²	R ³	product		ated d (%)
1	A	Н	Ph	<i>p</i> -Tol	Ph N p-Tol	4a	99
2	A	Н	Ph	PhCH ₂	Ph N Bn	4b	92
3	A	Н	Ph	Mes	N Mes	4c	99
4	A	Н	Ph	n-Oct	Ph N-Oct	4d	93
5	A	Н	Ph	n-Hex	Ph N-Hex	4e	93
6	A	Н	Ph	PMB	Ph PMB	4f	78
7	A	Н	t-Bu	<i>p</i> -Tol	p-Tol	4g	83
8	A	Н	t-Bu	PhCH ₂	t-Bu Bn	4h	74
9	В	CF ₃	<i>n</i> -Hex	PhCH ₂	F ₃ C	4i	66
10	С	CF ₃	n-Hex	4- EtCO ₂ C ₆ H ₄	F ₃ C	4j	67
11	С	Н	Ph	4-EtCO ₂ C ₆ H ₄	Ph N CO ₂ E	4k	92
12	C	Н	Ph	p-Tol	Ph p-Tol	4a	95

^a Alkyne (1.0 mmol), amine (1.2 mmol), Pd(OAc)₂ (5 mol %), HIPrCl (5) (5 mol %) in PhMe (3 mL), 105 °C. ^b A: KO-*t*-Bu (3 mmol); B: K₃PO₄ (3 mmol), 16 h; C: CuI (5 mol %), K₃PO₄ (3 mmol), 5−18 h.

employed (entry 9), thereby expanding the functional group tolerance significantly. ¹³ Longer reaction times, and in some cases, incomplete cyclization of the amination product **3** were observed using these bases, ¹⁴ suggesting an acceleration of the ring closing reaction by KO-*t*-Bu. ⁶ Because copper salts were frequently used for the cyclization of *o*-alkynylanilines

440 Org. Lett., Vol. 7, No. 3, 2005

⁽⁴⁾ For a two-step, one-pot approach consisting of a hydroamination and a subsequent intramolecular palladium-catalyzed amination reaction, see: Siebenreicher, H.; Bytschkov, I.; Doye, S. *Angew. Chem., Int. Ed.* **2003**, *42*, 3042–3044.

^{(5) (}a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125–146. (b) Hartwig, J. F. In Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, 2000; pp 195–262. (c) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; Wiley: Chichester, 2004; pp 373–391.

^{(6) (}a) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488–2490. (b) For a review, see: Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795–813.

^{(7) (}a) For a recent example, see: Hiroya, K.; Itoh, S.; Sakamoto, T. *J. Org. Chem.* **2004**, *69*, 1126–1136. (b) See also: Barluenga, J.; Trincado, M.; González, J. *Angew. Chem., Int. Ed.* **2003**, *42*, 2406–2409 and references therein.

⁽⁸⁾ Early examples: (a) Castro, C. E.; Stephens, R. D. *J. Org. Chem.* **1963**, 28, 2163. (b) Castro, C. E.; Gaughan, E. J.; Owsley, D. C. *J. Org. Chem.* **1966**, *31*, 4071–4078.

⁽⁹⁾ For the use of heterocyclic carbene ligands in C-N bond-forming processes, see: (a) Huang, J.; Grasa, G.; Nolan, S. P. *Org. Lett.* **1999**, *I*, 1307–1309. (b) Stauffer, S. R.; Lee, S.; Stambuli, J. P.; Hauck, S. I.; Hartwig, J. F. *Org. Lett.* **2000**, *2*, 1423–1426.

⁽¹⁰⁾ Alkynes **2** were obtained from *o*-dihaloarenes **1** with excellent selectivity in 73–96% isolated yields by Sonogashira coupling reactions using Pd(PPh₃)₂Cl₂ and CuI. For a review, see: Marsden, J. A.; Haley, M. M. In *Metal-Catalyzed Cross-Coupling Reactions*, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; pp 317–394.

⁽¹¹⁾ Representative Procedure for Palladium-Catalyzed Indole Synthesis: 2-Phenyl-1-p-tolyl-1H-indole (4a). To a solution of Pd(OAc)₂ (11 mg, 0.05 mmol, 5 mol %), HIPrCl (5) (21 mg, 0.05 mmol, 5 mol %), and KOt-Bu (336 mg, 3.0 mmol) in PhMe (3 mL) were added 1-chloro-2-phenylethynylbenzene (212 mg, 1.0 mmol) and 4-methylaniline (129 mg, 1.2 mmol) at room temperature. The resulting red mixture was stirred at 105 °C for 2 h, after which GC/MS analysis indicated complete conversion of the starting material. CH₂Cl₂ (50 mL) and aq HCl (2 N, 50 mL) were added to the cooled reaction mixture. The separated aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-pentane/Et₂O, 200/1) to yield 4a as a white solid (282 mg, 99%).

3,8 such problems could be circumvented by addition of 5 mol % CuI to the catalytic system, leading to quantitative conversion to the corresponding indoles $\bf{4j}$, $\bf{4k}$, and $\bf{4a}$, when using K_3PO_4 (entries 10-12).

Recently, renewed interest has focused on the coppercatalyzed Ullman—Goldberg amination reaction. 15 "Ligandfree" CuI-catalyzed amination reactions employing KO-*t*-Bu as base have also been described. 16 Consequently, the possibility of accomplishing a copper-catalyzed indole synthesis was explored (Table 2).

Table 2. CuI-Catalyzed Indole Synthesis^a

R		X	₹ ² + R ³ NH	2 10 mol% Cu PhMe, 11	05 °C	\mathbb{R}^{3}	
entry	X	R¹	\mathbb{R}^2	R³	product	yield (%)	
1	Cl	Н	Ph	4-MeC ₆ H ₄	Ph p-Tol	4a 21 (51)	ь
2	Cl	CF ₃	n-Hex	4-MeC ₆ H ₄	F ₃ C	7n-Hex (53)	ь
3	Br	Н	n-Hex	Ph	Ph	4m 84	
4	Br	Н	n-Hex	4-MeC ₆ H ₄	n-H p-Tol	ex 4n 67	
5	Br	Н	n-Hex	4-CIC ₆ H ₄	N n-H	^{ex} 4o 70	
6	Br	Н	n-Hex	4-MeC ₆ H ₄	CI N p-Tol	e× 4 p 75	
7	Br	Н	n-Bu	2-MeOC ₆ H	4 NeO-N	4q 69	

 a Isolated yields; alkyne (1.0 mmol), amine (1.2 mmol), KO-t-Bu (3.0 mmol), and CuI (10 mol %) in PhMe (3 mL), 105 °C. b Conversion of 2 by GC analysis, 48 h.

Aryl chlorides reacted sluggishly and low isolated yields were obtained due to the formation of byproducts (entries 1 and 2). However, complete conversion was obtained for the corresponding aryl bromides, allowing isolation of the indoles in high yields after only 2 h (entries 3-7).¹⁷

Subjecting the *o*-alkynylbromoarene **2** employed in Table 2, entries 3–6, and the secondary amine *N*-methylaniline to

these reaction conditions gave mainly rise to the corresponding hydroamination product. This suggests that here a sequence consisting of an intermolecular hydroamination and a subsequent intramolecular amination 18,19 is predominantly operative.

As the palladium amination catalyst was found compatible with the addition of substoichiometric amounts of CuI, a multicatalytic²⁰ one-pot indole synthesis consisting of a Sonogashira coupling reaction, an amination and an intramolecular hydroamination sequence was probed (Scheme 2).²¹ A combination of commercially available imidazolium salt 5, Pd(OAc)₂, CuI, and Cs₂CO₃ enabled quantitative conversion to **4a**, which was isolated in 64% yield.

Scheme 2. Multicatalytic One-Pot Indole Synthesis

In conclusion, general and efficient approaches to the indole framework starting from *o*-alkynylhaloarenes **2** are presented. These transformations proceed via either a palladium- or a copper-catalyzed amination reaction, and are applicable to alkyl- and aryl-substituted alkynes and amines. Furthermore, they allow for the use of mild bases, such as K₃PO₄, and the introduction of different protecting groups at nitrogen of the indole moiety. Remarkably, a one-pot indole synthesis starting from *ortho*-chloroiodobenzene is viable using a single catalytic system consisting of Pd(OAc)₂, CuI, HIPrCl (**5**), and Cs₂CO₃.

Org. Lett., Vol. 7, No. 3, 2005

⁽¹²⁾ Under otherwise identical reaction conditions to the ones outlined in Table 1, entry 9, the use of Cs₂CO₃ or KOAc instead of K₃PO₄ led to complete conversion (**4j**: 40% isolated yield) and no conversion of the corresponding alkyne, respectively.

⁽¹³⁾ Wolfe, J. P.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6359-6362.

⁽¹⁴⁾ The use of K_3PO_4 instead of KO-t-Bu under otherwise identical conditions to the one outlined in Table 1, entry 8, yielded exclusively the corresponding amine 3, supporting the sequence outlined in Scheme 1.

^{(15) (}a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400-5449. (b) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428-2439.

⁽¹⁶⁾ Kelkar, A. A.; Patil, N. M.; Chaudhari, R. V. *Tetrahedron Lett.* **2002**, *43*, 7143–7146.

⁽¹⁷⁾ Representative Procedure for CuI-Catalyzed Indole Synthesis: 2-n-Hexyl-1-p-tolyl-1H-indole (4n). To a solution of CuI (18 mg, 0.10 mmol, 10 mol %) and KO-t-Bu (336 mg, 3.0 mmol) in PhMe (3 mL) were added 1-bromo-2-oct-1-ynylbenzene (265 mg, 1.0 mmol) and 4-methyl aniline (129 mg, 1.2 mmol) at room temperature. The resulting mixture was stirred at 105 °C for 2 h, after which GC/MS analysis indicated complete conversion of the starting material. CH₂Cl₂ (50 mL) and aq HCl (2 N, 50 mL) were added to the cooled reaction mixture. The separated aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-pentane/Et₂O, 200/1 \rightarrow 50/1) to yield 4n as a yellow oil (195 mg, 67%).

⁽¹⁸⁾ For copper-catalyzed intramolecular amination reactions of aryl chlorides under mild conditions, see: Kwong, F. Y.; Buchwald, S. L. *Org. Lett.* **2003**, *5*, 793–796.

⁽¹⁹⁾ KO-*t*-Bu can assist similar cyclization reactions via formation of an aryne intermediate. See, for example: Beller, M.; Breindl, C.; Riermeier, T. H.; Tillack, A. *J. Org. Chem.* **2001**, *66*, 1403–1412.

⁽²⁰⁾ Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302–312.

⁽²¹⁾ For the use of *N*-heterocyclic carbene palladium complexes for Sonogashira coupling reactions, see: Yang, C.; Nolan, S. P. *Organometallics* **2002**, *21*, 1020–1022.

Acknowledgment. Support by Professor Paul Knochel and the Ludwig-Maximilians-Universität, as well as the DFG through an Emmy Noether fellowship, is gratefully acknowledged. The author thanks Sebastian Barfüsser for the synthesis of starting materials.

Supporting Information Available: Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL047649J

442 Org. Lett., Vol. 7, No. 3, 2005